本文目录:
- 1、数据治理说起来容易,做起来难,华为云Stack有解
- 2、智能化运营管理平台是什么?
- 3、估值380亿美元的数据湖引领者,Databricks是如何发展壮大的?
数据治理说起来容易,做起来难,华为云Stack有解
移动互联网和大数据日益发展,沉淀的数据越来越多,数据的质量、使用效率、数据安全等等各类的问题迎面而来。为了让数据发挥最大的价值,数据治理作为数智化战略的一项必要举措,列入了大多数企业的战略行动计划,业界也有“数字转型、治理先行”的说法。但是谈到数据治理,业界有一个普遍的共识,那就是 “数据治理说起来容易,做起来难”。怎么通过数据治理解决这些难题?数据治理究竟难在哪里?华为作为典型的非云原生企业是如何应对的呢?
2018到2021年间全球8300家标杆企业中,全面拥抱数字技术的前10%企业相比后25%企业营收增速超过5倍。数字化转型浪潮下,数据资产将成为关键生产要素支撑未来数据产业化升级,是未来政企实现跨越式发展的必然选择。
根据华为在政企行业多年的深入耕耘和自身转型的实践,我们发现,优质高效的数据底座,是保障政企运营效率持续提升和业务创新升级的重要基石。我们深知打破数据孤岛、确保数据准确、促进数据共享、保障数据隐私与安全,是政企数据治理的关键。当前很多企业数据体系建设呈现出“烟囱化”的趋势,为政企数据治理带来了四大挑战:
l 进不来 :数据来源复杂,集成难;
l 质量差 :数据质量要求高,规则校验多,落地难;
l 出不去 :数据烟囱林立,业务和数据匹配难,共享难;
l 不放心 :数据安全、交互风险高。
早期的华为是典型的非数字原生企业。从2007年开始,我们通过两个阶段的持续变革,系统地完成了数据管理体系建设,实现业务感知和ROADS体验的数字化转型:
l 阶段一(2007-2017) :设立数据管理专业组织,建立数据管理框架,发布数据管理政策,通过统一信息架构与标准、有效的数据质量改进机制,提升数据质量,实现数据全流程贯通,业务运作效率整体提升。
l 阶段二(2017-至今): 建设数据底座,汇聚和联接全域数据,实现数据业务可视、随需共享、敏捷自助、安全透明的目标,支撑准确决策和数据创新,构筑差异化竞争力。
华为经过十多年的实践,我们总结出 “4层保障”和“2个抓手”(信息架构、数据质量) ,实现清洁数据,充分释放数据价值的核心手段。
4层保障包括:
l 政策保障: 从目的、适用范围、管理原则、问责等方面进行政策制定,公司层面需统一遵从,确保业务与IT共同参与数据治理。
l 流程保障: 建立数据管理流程,重大决议由企业变革指导委员会决策,通过变革管理体系和流程运营体系落地。
l 组织保障: 按领域任命数据管理Owner和团队,建立实体化数据管理组织承接数据管理改进目标。
l IT落地保障: 建设承载面向“联接共享”的数据底座和数据服务融合的统一IT平台,完成数据全流程流转与价值变现。
2个抓手是指:
l 信息架构: 构建面向“业务交易”的信息架构,描述业务运作和管理决策所需要的各类数据及其关系,保障企业内统一“数据语言”。
l 数据质量: 建立数据质量管理框架和运作机制,例行开展公司级数据质量评估,由企业数据管理组织定期发布报告,牵引各业务领域持续改进。
上述的4层保障和2个抓手,构成了企业数据战略资产综合治理体系,能够确保关键数据资产的有清晰的业务管理责任,IT落地有稳定清晰的原则依据,作业人员有规范的流程指导。遇到争议时,有裁决和升级处理机制,治理过程有充足的人力、组织、预算保障。只有建立起有效的数据治理环境,数据的质量和安全才能得到保障,数据的价值才能真正发挥。
作为华为数字化转型的底座,华为云沉淀了大量的实践经验和方案能力,并通过华为云Stack来赋能政企,加速各行各业的数字化转型。在数据治理领域,华为云Stack为政企提供数据湖治理中心服务(DGC)来帮助企业客户快速构建数据运营能力。DGC是数据全生命周期一站式开发运营平台,提供数据集成、数据开发、数据治理、数据服务、数据可视化等功能,支持行业知识库智能化建设,支持大数据存储、大数据计算分析引擎等数据底座。下面我们就来一起看看DGC是怎样应对我们前面提到的挑战:
l 进的来:简单高效的物理和逻辑数据集成保障数据全面入湖
非数字原生企业发展普遍有较长的 历史 ,随着不同阶段的发展需求,业务系统间存在大量复杂的集成和嵌套,数据来源多样,数据形成孤岛难以集中共享。
数据集成:简单易用的多源异构数据批量和实时接入
DGC能够提供活易用的可视化配置与迁移任务编排,将数据迁移和集成的效率提升数十倍。除主流关系型数据库支持外,还支持对象存储、NoSQL等40余种同/异构数据源及三方大数据平台批量迁移入湖。 DGC物理入湖与HetuEngine跨湖跨仓协同的逻辑入湖 作为两种重要数据集成方式协同互补,满足数据联接和用户数据消费不同场景需求,支撑客户数据湖从离线走向实时,构建物理分散、逻辑统一的逻辑数据湖。
l 理的清:从源端架构到平台工具端到端数据质量保障
企业级信息架构:结构化的方式实施有效的治理
企业在运转过程中,需要定义业务流程中涉及的人、事、物资源,实施有效的数据治理,确保各类数据在企业业务单元间高效、准确地传递,上下游流程快速执行和运作。企业长期存在信息架构与IT开发实施“两张皮”的现象,数据人员和IT人员缺乏统一协同,企业数据架构混乱,信息架构资产和产品实现逻辑割裂,数据模型资产缺失。
平台工具和服务:一体化开发设计,端到端专业服务,有机联动保障数据质量
结合华为数据治理专家团队与项目实践经验,DGC规范设计实现了一体化设计和开发,不仅确保了元数据验证、发布和注册的一致性,而且实现了产品数据模型管理和资产可视,同时辅以专业的数据治理服务团队、成熟项目管理机制和丰富的实践经验,支撑企业构建高质量的清洁数据架构和能力。在政务大数据中心通过DGC一体化平台和专业服务,完成多个委办局全量数据接入,落地数据分层架构模型设计,完成基础库与主题库的建设,实现委办局数据全流程生命周期设计与落地,涵盖数据架构和模型设计、数据标准设计、数据模型物化、数据质量稽核作业等,助力领导决策支持、宏观经济云图和惠民APP示范应用系统上线。
l 出得去:通过数据服务和数据地图实现数据自助消费
数据底座建设的目标是便捷地支撑数据消费,确保用户安全可靠地获取数据,并通过灵活的数据分析等方式,按需快捷的消费数据。
数据服务:服务化方式供应数据
通过服务化方式对外提供,用户不再直接集成数据,而是通过聚合应用模型可视化构建,涵盖API发布、管理、运维、售卖的全生命周期管理,作为业务的“可消费产品”的关键要素之一,解决了数据的可供应性。
数据地图:从查询到分析到使用一站式自助
以数据搜索为核心,综合反映数据的来源、数量、质量、分布、标准、流向、关联关系,满足多用户、多场景的数据消费需求,解决了数据“可搜索/可获取性”的难点问题。消费方获取数据后,还支持从数据查询到拖拽式分析的端到端的一站式自助作业,帮助数据消费者结合自身需要获取分析结果,满足业务运营中数据实时可视化需求。
l 用的安:从模型、制度到平台多维度打造立体化数据安全体系
安全能力模型评估:系统化安全管理抓手
数据安全能力成熟度模型是数据安全建设中的系统化框架,围绕数据全生命周期,结合业务的需求以及监管法规的要求,持续不断的提升组织整体的数据安全能力,提升数据安全水平和行业竞争力,确保数据生产要素安全流通和数字经济 健康 发展。在多个项目中,华为通过安全评估、安全加固等专业服务,助力客户高分通过等保评估,实现数据安全流通。
从制度到工具和服务:统一安全治理框架落地
数据安全治理需要从决策层到技术层,从管理制度到工具支撑和服务体系,自上而下形成贯穿整个组织架构的完整链条。企业组织内的各个层级之间需要对数据安全治理的目标达成共识,确保采取合理和适当的措施;DGC数据安全定义数据密级、认证数据源、对数据动静态脱敏及添加水印等方式以最有效的方式保护数字资产。
企业数字化转型逐步进入深水区,如何提升海量数据治理的效率和准确率,如何将专家经验固化传递都面临巨大的挑战。人工智能与数据治理深度融合将会开启数据治理的新阶段,通过AI加速企业数据生产要素的变现、进一步释放数据价值。
l 智能数据资产编目
基于AI的智能数据编目系统具备数据的学习、理解和推理能力,帮助团队实现数据自主、简化数据 探索 、实现重要数据资产智能编目推荐。
l 智能数据标准推荐/去重
通过机器学习技术,自动扫描元数据信息,提炼关键数据项,智能识别新增数据标准、冗余存量数据标准去重,提高智能化程度。
l 智能重复/异常数据检测
智能重复/异常数据检测技术,将数据根据相似读音、相似数据类型分组,通过模型计算相似度得分,超出规定阈值时,自动异常检测和识别。
l 智能主外键识别
通过筛选候选主外键时构造特征向量,并调用分类器智能判别该元数据是否为主外键,提升数据模型质量,进而优化和简化后续资产梳理和对外提供数据服务。
数据是物理世界、数字世界和认知世界相互联接转换的纽带,大规模数据交互将构成庞大的政企数据生态。政企数字化转型不能一蹴而就,数据治理亦非一朝一夕之功,治理的数据规模日趋庞大,类型千变万化,手段也更智能丰富,需要我们共同携手从制度、流程、技术、生态多维度一起努力,构建数据智能新世界。
智能化运营管理平台是什么?
智能化运营管理相比一般的管理平台要更便捷稳定、更具可视化,能够节省企业信息平台的维护费用。不同智能管理平台的设计理念也不同,如锐捷网络推出的RIIL
BMC综合业务管理平台采用了扁平化的结构设计,优化了操作步骤,实现了全部信息的可视化。在节省大量空间的同时提高了操作的灵活性和拓展性。
估值380亿美元的数据湖引领者,Databricks是如何发展壮大的?
阿尔法公社
重度帮助创业者的天使投资基金
Databricks是一家正在崛起的企业软件巨头。2021年,它连续获得两轮10亿美元级别的大额融资,估值跃升到380亿美元,它在数据和人工智能领域具有全球雄心。
Databricks是一个非典型的创业故事,它由七位联合创始人创办,其中大部分是学者。它从Spark开源项目起步,现在引领了数据湖范式,这将加速其与主要竞争对手Snowflake的竞争。
本文是投资人Matt Turck与Databricks联合创始人兼CEO Ali Ghodsi的对话实录,Matt Turck在2015年就与Databricks的联合创始人Ion Stoica有过对话,对于Databricks的情况相当熟悉。在本文中Ali Ghodsi将透露Databricks从一个开源项目到大型公司的成长经历,以及在团队,产品,进入市场,扩张等方面积累的洞见,Enjoy。
科学家创始人们推动Databricks起步
Matt Turck: 我们谈一下Databricks的起步,AMPLab、Spark和Databricks,这一切是如何开始的?
Ali Ghodsi: 我们当时正处于人工智能革新的风口浪尖:Uber刚刚起步,Airbnb、Twitter处于早期,Facebook还不是巨头。他们声称,使用20世纪70年代诞生的机器学习算法实现了很好的效果。
以当时的常识来想这不可能是真的,我们觉得那些算法不可能Work,但他们说,“不,我们得到了非常厉害的结果。”当仔细观察后,我们的想法被颠覆了——他们确实获得了惊人的结果。以现代硬件和大量数据为支撑,运用上世纪的算法依旧可以获得令人难以置信的产出,我们对此感到震惊。我们想:”需要使之普适化”。例如,在Facebook,他们可以提前检测到情侣分手,如果地球上的每个企业都有这种技术,这会对现有商业产生巨大影响。这就是AMPLab的起点。
Matt Turck: 当时AMPLab的Spark是怎么来的?
Ali Ghodsi: 图灵奖得主之一戴夫·帕特森当时是伯克利的教授,他非常相信人们应该聚在一起,打破孤岛。伯克利的教授们放弃了自己的私人办公室,和所有学生一起在巨大的开放区域办公。
他们试图解决的机器学习问题以当时的技术背景来说是很有挑战性的。AMPLab里做机器学习的人,做数学的人,不得不使用Hadoop,数据的每一次迭代都必须运行MapReduce,这样光是做一次迭代就需要20到30分钟。所以当时我们决定:”联合起来,建立一个反应快速的基础架构。”我们在数据上做了很多迭代。因此,不只是做一次,不只是一个SQL引擎,而是可以做递归机器学习的东西,并可以极快地找到数据中的内涵模式。
Matt Turck: Databricks创始故事的特殊之处在于,你们有七、八个联合创始人。回过头看,拥有这样一个大的创始团队利与弊是什么?
Ali Ghodsi: 肯定是有利有弊的。如果你知道如何真正让由七个人组成的紧密小组真正信任对方,并在一起工作得很好,就会发生令人惊讶的事情。我认为Databricks的成功很大程度上归因于我们互相的信任。
创业早期的创始人,即使只有两个人,他们也会争吵,然后可能会在一两年内分裂,这就是问题所在。我们找到了一种方法,使大家真正了解对方的长处和短处,使这段创业旅程成为一种乐趣。
人们总说CEO是地球上最漫长的工作,我从来没有这种感觉。我有很多联合创始人和我在一起,他们一直都在,这对我们来说绝对是一种力量。如果我们没有这些人,就不会有现在的成就。
从开源项目到公司,
从0到100万美元ARR
Matt Turck: 你们是如何从学术性的开源项目(Spark)变成一家公司,然后从0做到1000万美元ARR的?这背后是否有任何决定性的时刻,或其他特别的增长手段?
Ali Ghodsi: 我们从0到100万美元ARR的旅程非常特别,与其他的旅程非常不同。我们经历了三个阶段,第一个阶段是PMF(产品与市场契合)阶段,当你有了一个产品,你能找到它与用户之间的契合点么?这对任何公司都存在挑战。
你一旦你找到PMF,接下来就得弄清楚什么是能将该产品与市场联系起来的渠道,你的产品或许符合市场需求,但怎么通过渠道销售呢?事实上,我们一开始在这方面走了弯路,花了几年时间才确定正确的发展方向。在这几年里,为了弄清楚Databricks的正确模式我们进行了大量的实验。
接下来,让我们从产品开始,然后再谈谈渠道。
产品方面,我们有在伯克利建立的开源技术,但这不一定符合大企业的需要,因为在大企业,他们没有来自伯克利的博士。因此,我们需要为他们大简化问题,我们开始在云中托管它,但事实证明,即使是云版本对他们来说也太复杂了,无法使用。
因此,我们开始与用户一起进行迭代。我们在这之后削减了很多特性和功能,甚至可以说重新构建了一个产品。我们问自己:”如果我们知道现在的一切,回去再做一次,会怎么做?”
于是,我们重新做了另一个开源项目,Delta,你可以把它看作Spark为大型企业所做的非常简单和自动化的软件。当我们在伯克利时,我们的产品设想是提供尽可能多的功能和设置项,因为可能是一个博士在用它做研究。但当我们把产品在企业中推广时,我们意识到不是每个人都有博士学位,大家不知道如何使用它。这就是早期我们遇到的问题。在渠道方面,错误在于,我们在早期真的是非常相信这种产品主导的增长。
关于销售,当时我们的设想是,有了一个简化的产品,我们把它做成基于云的产品,就会有人会使用它,会为它刷信用卡,我们会非常成功。我们可以雇用销售人员,给年轻人打电话进行推销,我们不会雇佣企业的销售人员。我们更喜欢这种模式,它更便宜,更简单。
但那是一个错误。你不能凭空选择你的渠道。你有一个产品和相应的市场,必须找到正确的渠道来连接它们。
Databricks如何开发产品,
数据仓库VS数据湖
Matt Turck: 我们一会再继续谈进入市场。现在让我们先谈谈产品,我在Databricks观察到的令人着迷的事情之一是,你们发布新产品并将其转化为一个平台的速度。从Spark到机器学习到AI工作台再到Lakehouse,请向我们介绍一下产品的思路——一个产品如何导致另一个产品的出现。
Ali Ghodsi: 我们从Spark开始起步,它让用户可以访问所有数据;于是人们开始在企业中创建数据库,并在其中积累了大量数据。但过了一段时间,企业高管会问:“我不在乎我们获得和存储了多少数据,你能用这些数据为我做什么? ” 这就是我们试图建立其他应用程序的原因。
起初我们的收入很少,然后我们意识到它太复杂了,有太多的选项和配置。我们就问自己:”如果必须重做,必须简化,会做什么?”这种思路后的第一个创新是Delta,它重新定义了Spark,以一种真正企业友好的简化方式。但最初我们没有将它开源。
接下来,我们想:“如果拓宽数据库的用途,不仅仅是数据科学家和机器学习工程师,而是真正广泛的用例,应该怎么做? ” 这就是我们开始重视商业分析师的原因。
商业分析师习惯于像Tableau那样的操作软件。如果他们想做一些更复杂的事情,只能使用SQL。因此,我们在四年前开始致力于构建数据仓库能力,把它建立在我们称为Lakehouse的核心基础设施中,然后在前年较大规模的推广。
我们的秘诀是:看企业的问题,弄清楚那是什么,通过实际的客户问题来深入了解它,把问题带回来,解决这个问题,在云中与客户快速迭代。一旦它有了产品的市场适应性,就把它开放出来。建立巨大的开源势头,几乎像一个B2C病毒式的形式。然后,用基于云的SaaS版本将其变现。
这是受AWS的启发,当创立Databricks时,我们认为AWS是地球上最好的云计算开源公司。他们本身不进行开发,其盈利模式基于开源软件,托管它并在上面赚很多钱。我们只是在这一点上进行了调整和演变。我们认为:“这是一个伟大的商业模式。我们将在云上托管开源软件。但不同的是,我们将自己创建开源软件。这样一来,就获得了相对于其他任何想做同样事情的人的竞争优势。 ” 否则,任何人都可以建立任何开源软件并在云中托管它。
Matt Turck: 接下来,让我们从Lakehouse开始,了解一下数据湖和数据仓库的演变,以及Lakehouse是如何在这两个领域中取得最好的成绩。
Ali Ghodsi: 这很简单。人们在数据湖里存储所有的数据:数据集,视频、音频、随机文本,这既迅速又便宜。利用各种各样的数据集,你可以基于数据湖进行AI创新,AI与数据湖密切相关。如果你想做BI,而不是AI,你就使用数据仓库,数据仓库和BI有一个单独的技术堆栈,但是它其实和AI一样,有很多同样的数据集。
BI用于回答过去的问题,比如上个季度的收入是多少;AI用来问关于未来的问题,哪些客户将会回来?所以,这意味着需要两个独立的堆栈,你必须有两个数据副本,而且你必须管理它们,这造成了很多复杂性。但当年的FAANG(硅谷几个顶尖互联网巨头的联合简称)可不是这样做的,他们有一个统一的平台。所以,我们的想法是把这两个统一成一个平台—Lakehouse、人工智能数据湖–提出关于未来的问题。这两者的结合将使企业能够更快地发展。它是数据工程师、数据科学家和商业分析师的平台,这样他们就可以在整个企业内一起工作。所以这是一个用于AI和BI的数据平台。
Matt Turck: 实现这一点靠的是什么重大的技术突破么?是Delta Lake?还是Iceberg?那是如何工作的?
Ali Ghodsi: 是的, 我认为有四个技术突破是在2016、2017年同时发生的,Hudi、Hive ACID、Iceberg、Delta Lake,我们贡献的是Delta Lake。问题是这样的,在数据湖里有人们收集了所有的数据,这些数据非常有价值,但很难对它们进行结构化查询。之前的传统方式是利用SQL数据库,然后应用在BI领域。因此,你需要一个单独的数据仓库。
为什么这么难?因为数据湖是为大数据、大数据集建立的,它并不是为真正的快速查询而建立的。它太慢了,而且没有任何方法来结构化数据,并以表格的形式展现数据,这就是问题所在。那么,你如何把像一个大的数据块存储的东西,变成一个数据仓库?这就是这些项目的秘诀。我们找出了解决这些数据湖效率低下的方法,并使用户能够直接从数据湖的数据仓库中获得相同的价值。
Matt Turck: 这种方法有什么取舍吗?
Ali Ghodsi: 事实上并非如此,我们做到了鱼与熊掌可以兼得。我知道这听起来很疯狂,但试试就是如此。我们减少了很多在80、90年代由数据仓库供应商发明的技术,调整它们,使它们在数据湖上工作。你可以问:“为什么这在10或15年前没有发生? ” 因为开放标准的生态系统并不存在,它是随着时间的推移慢慢出现的。所以,它从数据湖开始,然后有一个很大的实际技术先导突破。我们在这里谈论的,是数据的标准化格式。他们被称为Parquet和ORC,但这些是数据格式,行业要将所有的数据集标准化。
这些类型的标准化步骤是需要的,以获得数据湖的突破。这有点像USB,一旦你有了它,你就可以把任何两个设备相互连接起来。所以,正在发生的事情是,开源领域的一个生态系统正在出现,在那里你可以在数据湖的范式中做所有的分析。最终,你将不需要所有这些自八十年代以来的专有旧系统,包括数据仓库和其他类似系统。
Matt Turck: 我会针对这个再问问题,业界有很多关于Snowflake和Databricks之间即将发生大冲突的议论,作为这个领域的两个巨大的公司,你对未来的看法是,数据湖最终成为范式,然后随着时间的推移,其他一切都被吸收?还是你认为未来更多的是混合,用户可以用数据仓库做某些事情,数据湖做其他事情?
Ali Ghodsi: 我将从两个方面回答这个问题。首先,人们把这说成是零和博弈,但你认为谷歌云会淘汰AWS和微软云,还是AWS会淘汰其他云?没有人这么认为,对吧。他们会共存,都将获得成功。
数据空间是巨大的。将会有很多供应商参与其中。我认为Snowflake将获得成功,他们现在有一个伟大的数据仓库,可能是市场上最好的数据仓库。而它肯定会与Databricks共存。事实上,Databricks与Snowflake共存于可能70%的客户中。我认为这种情况将继续存在,人们将使用数据仓库进行商业智能。
但是,如果长期来看,我认为数据湖的范式将获胜。为什么?因为数据太重要了,人们所有的数据都在这些数据湖中,而且更多的数据正在进入数据湖中。公有云计算供应商也有动力推动更多的动力让人们把数据存到他们的数据湖中,因为这对他们来说是既得利益。因此,任何使其真正有价值的解决方案,都将是未来的趋势。所以,我认为从长远来看,越来越多的人将倾向于这种数据湖的范式。
为什么Databricks能够不断产出创新产品?
Matt Turck: 我想了解你的产品和工程团队是如何组织的?对于一家公司,能够在第一个产品成功的基础上做第二个产品是非常罕见的。但在这里,我们正在谈论,如何成功的做出三个、四个、五个不同的产品。你的公司是如何管理好团队组织结构和其他资源,以不断创新?
Ali Ghodsi: 我们从创立Databricks时,就在试图找到这个问题的答案。我们不想靠一个单一的产品生存。当我们有了Spark,却并没有把它当成公司的名字,因为如果Spark变得落后了,我们就会把它迭代掉,然后继续向前,我们想不断找到数据的最佳答案。那么如何不断的有创新产品出现?我认为非常重要的是,要把创新和现有的现金流业务分开。
有一本关于这个问题的好书,叫Zone To Win。书中谈到,当你创造出一些新东西时,你需要快速迭代。你需要让工程师直接与客户交谈,甚至不一定要让产品经理来做,快速的创新迭代是最要紧的。而在在企业端,你需要一个慢得多的周期来迭代。
另外,所有的工程和产品团队组织被分成两个不同的部分。一部分专注于企业客户需要的东西:加密,安全,认证,稳定性等。另一部分则专注于创新,而且你应该把这些分开,分别的投入资源,否则前者(企业那部分)将得到所有的资源。你会倾向于不断地建立那些扩大你的TAM的东西。TAM扩展实际上是安全能力,它本身并没有任何创新。
我认为,有些公司已经做得很好了,比如AWS,它不是一招鲜,亚马逊本身也不是一招鲜,它不断有新的创新。所以我们希望我们的公司也是这样的,因此取名为Databricks。
Matt Turck: MLflow Delta Lake, Koalas。这属于创新阵营还是商业阵营的子层?
Ali Ghodsi: 这些都是创新阵营。当然,其中一些项目,当他们不那么创新的时候,像Spark,会转移到维护方面,我们通常也会移动核心人员。因此,实际上是同一个人或同一拨人在不断地进行创新。我们试图培养更多的创新者,但我们试图把那种已经真正有诀窍破解从0到1的人转移到下一个问题,然后把现有的项目移交给其他人去运行,比方说Spark,这已经是一个巨大的成功项目。
当我们把已经创造出东西的人转移到别的地方去创造下一个东西,对于一个优秀人才,获得这种责任是一个很大的职业提升。而我们也会发现谁是擅长从0到1人。我们实际上是在做实验,给研发部门的人一个机会去试验从0到1的东西,他们并不总是成功。这需要几次尝试,直到他们成为真正擅长的人。所以你必须慎重考虑这种高失败的策略。
开源的商业模式,有何优越性?
Matt Turck: 如果你今天要再开一家企业软件公司,你会先去开源代码吗?
Ali Ghodsi: 是的,我认为它很优越。我认为如果你从进化的角度来考虑,它在进化上比以前的商业模式要好。为什么我这么说?因为任何专有的软件公司都是成熟的,可以被开源的竞争者破坏。因此,任何专有的东西都可以立即被颠覆,就像Windows被Linux颠覆一样。我的意思是,那是最先进的东西,是真正复杂的技术操作系统,对吗?你不会认为大学里的某个家伙会发明,然后成为工业的标准。任何专有软件都是成熟的,可以进行这样的颠覆。问题是,你能靠它赚钱吗?在红帽和所有这些做支持网络服务的公司之前,这真的很难,直到AWS破解了商业模式的密码。
商业模式是我们为你运行软件,你从我们这里租用它。这是一个优越的商业模式,因为你实际上可以拥有大量的IP,这是很难复制的。所以我认为我创办的下一家公司将是这样的。如果你要问我,我的下一次创业会在哪个领域开始,我会在人工智能方面做什么?我会认为我们现在在人工智能方面的应用还很浅层,尤其是操作性的人工智能。人工智能未来将会被嵌入到各个地方。我知道这很老套。马克·安德森说,软件正在吞噬世界。我们真的相信,人工智能将吞噬所有的软件。你拥有的任何软件,人工智能都会悄悄进入,就像软件悄悄进入你的 汽车 、冰箱和恒温器一样。所以这真的是早期的事情,我认为任何加入或创办人工智能领域公司的人,他们还在早期,他们有机会创办下一个谷歌。所以这就是我想做的。
Matt Turck: 我们谈到了开源,也继续谈进入市场的问题,在这个阶段,作为一个非常晚期的创业公司。开源在进入市场的过程中处于什么位置?你们进入市场的策略是自下而上与自上而下?你们如何分配BDR小组与AE的工作,让他们协作而不是互相拖后腿?
Ali Ghodsi: Databricks是混合模式,我们是自下而上与自上而下在同一时间结合。一开始我们是自下而上,但是也会做自上而下的事情。我们有BDRs和SDRs。这是一个从市场营销开始的筛选器。
Databricks社区版是完全免费的,你想怎么用就怎么用,永远不需要付钱,而且有完整的功能。但是从这里产生的线索会导入到SDR。因此,这也是一个非常重要的管道。我们一半的线索来自于此,这就是为什么开源对我们是一个重要的引擎。
现在,我们也有传统的企业销售动作,比如给CIO递名片,一对一的交流,但发生的情况是,开发人员在这些组织中也变得越来越强大。例如,CIO说,我与Databricks的CEO进行了一次很好的谈话,我正在 探索 这项技术,但我担心,这对我们来说是正确的选择吗?那家公司的听众中会有人说,是的,我使用社区版。我们不需要做6个月的POC。我认识这些人,他们真的非常好,或者我认识他们,他们来自伯克利。我已经使用了这些技术。我去参加了一些聚会等。
因此,这有助于证实用例,你可以消除整个POC,因为他们已经知道它是什么,而不是像10-20年前那样,一个销售人员进来,解释这个软件有多棒,但你不能相信他们。因此你就必须去做POC,然后去花时间检验这个软件是不是真的有用。我们不必这样做,我们可以穿过所有这些层次。因此,我们把自上而下和自下而上结合起来,而这两方面对于Databricks的成功都是非常必要的。
从创业公司到超级独角兽,
领导者的修炼之路
Matt Turck: 你已经把一家小型创业公司带成了超级独角兽,很快还会上市。你是如何让自己完成角色转变的,从一个讲愿景,讲故事的人,变成管理一个全球组织?
Ali Ghodsi: 其实就是如何找到你可以信任的具有领导力的帮手,并和他们建立更深的信任。我可以把我大部分时间都花在这上面,而公司能够继续正常运行。我有运行良好的销售团队,市场营销团队,工程团队,我却不需要自己直接参与其中,因为我找到了适合领导这些部门的领导者,并且花了很多时间与他们建立起信任。
这是你在早期就要开始准备的事情,早期时,你的组织规模小,你可以参与到每个环节,如臂使指。但是当团队规模扩展到150-200人直到超过邓巴数。你会感觉自己完全被淹没了。因此你必须找到可以信任的正确的领导人,而且要找到自己与组织沟通的方法,因为现在不是直接沟通,而是通过领导层间接沟通,所以帮助你与团队组织沟通的人就特别重要。
Matt Turck: 你如何找到他们?你是偏向在内部提拔人才,还是从外部引入已经获得成功的高管,哪一个效果更好?你是如何处理的?
Ali Ghodsi: 要找到与公司文化相适应的、你能与之建立强大信任的高管是非常困难的,我认为不应该排除任何选项。如果能够从内部提拔人,那很好,但是如果只是内部晋升,你就不能获得市场上已经存在的成功经验,这种经验可能是超级有价值的。
如果我们寻找外部的高管,他必须经历过我们现在所处的阶段,有实战的经验。不是说他必须从零开始创建一个估值几百亿的公司,而是建立和操作过这种阶段公司的工程等相应部门,他是否在这个过程中有第一性思考,有自己的沉淀。我认为能力和智商还是非常重要的。
文化看起来是个很复杂的东西,但是对与我,会把它分解成一连串问题:我可以和这个人相处吗?愿意每天花10个小时和他在一起工作么?当事情变得非常棘手和困难的时候,我们能一起去解决问题么?所以你要做的就是花大量时间与这个人相处,然后问自己是否喜欢他们,就像婚姻一样。你可以问他们一些困难的问题,与他们争论或者听取他们的意见,直到确定这就是正确的人。如果你感觉到自己无法和某个人一起好好工作,那他就可能是文化不匹配。
本文编译整理自Matt Turck个人博客,略有删节。
关于阿尔法公社
阿尔法公社(Alpha Startup Fund)是中国领先的早期投资基金,由曾带领公司在纳斯达克上市的许四清和前创新工场联合管理合伙人蒋亚萌在2015年共同创立。
阿尔法公社基金的三大特点是系统化投资、社交化创业者社区运营和重度产业资源加速成长。专注在半导体、企业服务软件、人工智能应用、物联网技术、金融 科技 等 科技 创新领域进行早期投资。目前已经在天使轮投资了包括白山云 科技 、领创集团(Advance Intelligence Group)、Zenlayer、帷幄 科技 、所思 科技 等为数众多的优秀项目。
本文来源:https://www.yuntue.com/post/94010.html | 云服务器网,转载请注明出处!

微信扫一扫打赏
支付宝扫一扫打赏