本文目录:
- 1、mongoDB主要使用在什么场景?
- 2、mongodb使用场景是什么?
- 3、mongodb与mysql区别(超详细)
mongoDB主要使用在什么场景?
MongoDB的应用已经渗透到各个领域,比如游戏、物流、电商、内容管理、社交、物联网、视频直播等,以下是几个实际的应用案例:
● 游戏场景:使用MongoDB存储游戏用户信息,用户的装备、积分等直接以内嵌文档的形式存储,方便查询、更新。
● 物流场景:使用MongoDB存储订单信息,订单状态在运送过程中会不断更新,以MongoDB内嵌数组的形式来存储,一次查询就能将订单所有的变更读取出来。
● 社交场景:使用MongoDB存储用户信息,以及用户发表的朋友圈信息,通过地理位置索引实现附近的人、地点等功能。
● 物联网场景:使用MongoDB存储所有接入的智能设备信息,以及设备汇报的日志信息,并对这些信息进行多维度的分析。
● 视频直播:使用MongoDB存储用户信息、礼物信息等。
mongodb使用场景是什么?
适用场合
(1)网站数据:MongoDB适合实时的插入,更新与查询,并具备网站实时数据存储所需的复制及高度伸缩性。
(2)缓存:由于性能很高,MongoDB也适合作为信息基础设施的缓存层。在系统重启之后,由MongoDB搭建的持久化缓存层可以避免下层的数据源过载。
(3)大尺寸,低价值的数据。
(4)高伸缩性的场景:MongoDB适合由数十或数百台服务器组成的数据库。
(5)用于对象及JSON数据的存储:MongoDB的BSON数据格式适合文档化格式的存储及查询。
扩展资料
功能
1、面向集合的存储:适合存储对象及JSON形式的数据。
2、动态查询:MongoDB支持丰富的查询表达式。查询指令使用JSON形式的标记,可轻易查询文档中内嵌的对象及数组。
3、完整的索引支持:包括文档内嵌对象及数组。MongoDB的查询优化器会分析查询表达式,并生成一个高效的查询计划。
4、查询监视:MongoDB包含一系列监视工具用于分析数据库操作的性能。
5、复制及自动故障转移:MongoDB数据库支持服务器之间的数据复制,支持主-从模式及服务器之间的相互复制。复制的主要目标是提供冗余及自动故障转移。
6、高效的传统存储方式:支持二进制数据及大型对象(如照片或图片)。
7、自动分片以支持云级别的伸缩性:自动分片功能支持水平的数据库集群,可动态添加额外的机器
mongodb与mysql区别(超详细)
MySQL是关系型数据库。
优势:
在不同的引擎上有不同 的存储方式。
查询语句是使用传统的sql语句,拥有较为成熟的体系,成熟度很高。
开源数据库的份额在不断增加,mysql的份额页在持续增长。
缺点:
在海量数据处理的时候效率会显著变慢。
Mongodb是非关系型数据库(nosql ),属于文档型数据库。文档是mongoDB中数据的基本单元,类似关系数据库的行,多个键值对有序地放置在一起便是文档,语法有点类似javascript面向对象的查询语言,它是一个面向集合的,模式自由的文档型数据库。
存储方式:虚拟内存+持久化。
查询语句:是独特的Mongodb的查询方式。
适合场景:事件的记录,内容管理或者博客平台等等。
架构特点:可以通过副本集,以及分片来实现高可用。
数据处理:数据是存储在硬盘上的,只不过需要经常读取的数据会被加载到内存中,将数据存储在物理内存中,从而达到高速读写。
成熟度与广泛度:新兴数据库,成熟度较低,Nosql数据库中最为接近关系型数据库,比较完善的DB之一,适用人群不断在增长。
优点:
快速!在适量级的内存的Mongodb的性能是非常迅速的,它将热数据存储在物理内存中,使得热数据的读写变得十分快。高扩展性,存储的数据格式是json格式!
缺点:
不支持事务,而且开发文档不是很完全,完善。
Mysql和Mongodb主要应用场景
1.如果需要将mongodb作为后端db来代替mysql使用,即这里mysql与mongodb 属于平行级别,那么,这样的使用可能有以下几种情况的考量: (1)mongodb所负责部分以文档形式存储,能够有较好的代码亲和性,json格式的直接写入方便。(如日志之类) (2)从datamodels设计阶段就将原子性考虑于其中,无需事务之类的辅助。开发用如nodejs之类的语言来进行开发,对开发比较方便。 (3)mongodb本身的failover机制,无需使用如MHA之类的方式实现。
2.将mongodb作为类似redis ,memcache来做缓存db,为mysql提供服务,或是后端日志收集分析。 考虑到mongodb属于nosql型数据库,sql语句与数据结构不如mysql那么亲和 ,也会有很多时候将mongodb做为辅助mysql而使用的类redis memcache 之类的缓存db来使用。 亦或是仅作日志收集分析。
———————
原文:
本文来源:https://www.yuntue.com/post/94563.html | 云服务器网,转载请注明出处!